The prime radical in a Jordan ring

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Center of a Jordan Ring

and call the former the Jordan product and the latter the commutator or Lie product of a and b. If we use {ab} as product in place of the originally defined ab we obtain the Jordan ring 21/ determined by 21. Similarly the Lie ring 2tj is obtained by using [ab] in place of ab. Naturally if 21 has characteristic 2 then 21/=21*. I t is customary to exclude this case from consideration but in most ...

متن کامل

Jordan Derivations of Prime Rings1

1. Given any associative ring A one can construct from its operations and elements a new ring, the Jordan ring of A, by defining the product in this ring to be a o b = ab+ba for all a, b^A, where the product ab signifies the product of a and b in the associative ring A itself. If R is any ring, associative or otherwise, by a derivation of R we shall mean a function, ', mapping R into itself so ...

متن کامل

Prime ideals and the ideal-radical of a distributively generated near-ring

The concepts of a prime ideal of a distributively generated (d.g.) nearring R, a prime d.g. near-ring and an irreducible R-group are introduced1). The annihilating ideal of an irreducible R-group with an R-generator is a prime ideal. Consequently we define a prime ideal to be primitively prime if it is the annihilating ideal of such an R-group, and a d.g. near-ring to be a primitively prime nea...

متن کامل

Directed prime graph of non-commutative ring

Prime graph of a ring R is a graph whose vertex set is the whole set R any any two elements $x$ and $y$ of $R$ are adjacent in the graph if and only if $xRy = 0$ or $yRx = 0$.  Prime graph of a ring is denoted by $PG(R)$. Directed prime graphs for non-commutative rings and connectivity in the graph are studied in the present paper. The diameter and girth of this graph are also studied in the pa...

متن کامل

The Prime Radical in Alternative Rings

The characterization by J. Levitzki of the prime radical of an associative ring R as the set of strongly nilpotent elements of R is adapted here to apply to a wide class of nonassociative rings. As a consequence it is shown that the prime radical is a hereditary radical for the class of alternative rings and that the prime radical of an alternative ring coincides with the prime radical of its a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1968

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1968-0230776-x